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SIMULATION NEEDS: SHORT TERM
EIC detector design and optimization for proposal and beyond
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▪ EIC is an asymmetric collider

▪ Detector designs complicated mix of many 

technologies to address the subtleties of the 
physics events


▪ Near-beamline detectors integral part of 
detectors


▪ But… want hermetic detector with “seamless” 
PID, calorimetry and tracking everywhere.


▪ Simulation-driven detector design crucial

Figure from EIC YR
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A NEW DETECTOR FROM SCRATCH?

Detector & reconstruction 
requirements 
Extensive list of key performance 
parameters inform detector choices. 
This table of requirements could be 
interpreted as a series of automized 
tests that a detector implementation 
needs to pass.

From the EIC Yellow Report to an optimized EIC detector
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+ new developments

Physics requirements 
Detector design has to enable many 
key physics measurements, while 
being flexible enough to accommodate 
new developments through the next 2 
decades
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SIMULATION NEEDS: LONG TERM
High-luminosity EIC needs high-luminosity simulations
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▪ EIC is high-luminosity collider centered around 
precision QCD measurements


▪ At least 10-100x Monte-Carlo statistics/dataset 
required per measured event-of-interest to 
properly correct/unfold/analyze data.


▪ All these Monte-Carlo events need to be 
propagated through the detector simulation, which 
is the primary bottleneck for full simulations.


▪ At this point, the detector itself is essentially static.

▪ Prime place to use AI-techniques to “learn” 

and replace the detector simulation process.
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DETECTOR OPTIMIZATION WORKFLOW

5

Event Sample

or

Simple 
tracks

Physics 
events

Detector geometry

D
et

ec
to

r A

Va
ria

tio
n 

#1

Va
ria

tio
n 

#N

…

D
et

ec
to

r Ω

Va
ria

tio
n 

#1

Va
ria

tio
n 

#M

…
…

Simulation 
+ 

Digitization 
+


Reconstruction

Benchmark analyses

Detector 
benchmarks

Physics 
benchmarks

Reconstruction 
benchmarks



S. Joosten

ABOUT THIS PRESENTATION
Incomplete overview of bottlenecks in GEANT4 simulations
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▪ Based around personal experience with the 
ATHENA detector proposal (but points 
applicable to all proposed EIC detectors).


▪ Aimed to be introductory talk to give a more 
concrete idea of the problems we can solve


▪ Mostly centered around piecewise bottlenecks 
rather than a holistic approach.


▪Will not focus on solutions to these bottlenecks 
- see talks by Michele Kuchera, Benjamin 
Nachman, Lucio Anderlini, and Markus 
Diefenthaler.
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SIMULATION BOTTLENECKS
Many particles, many components, many steps
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▪ Usually bottlenecks occur where the particle 
count is high, e.g. as part of a calorimeter 
shower, or optical photons in a RICH.


▪ Bottlenecks can also occur in when navigating 
very detailed geometries (e.g. fiber 
calorimeters with millions of fibers).


▪ Finally, scenarios where we need many 
precise steps through a magnetic field (for 
upstream & downstream near-beamline 
detection) is relatively expensive.


▪ Often multiple bottlenecks at once.
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TRADITIONAL CALORIMETRY
From many particles to a 2D image
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▪ Calorimeter simulation is computationally 
intensive due to amount of shower particles.


▪ Typically, precise particle transport necessary 
up to calorimeter (to get good handle on actual 
incident particles).


▪ Even high-granularity calorimeters have 
resolution below the single-particle level - 
calorimeter hits are an aggregate quantity.


▪ Describing a traditional calorimeter as a 
transformation of incident particles into a 2D 
image prime target for generative models.
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IMAGING CALORIMETRY
From 2D to 3D calorimetry and increasing role of noise
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▪ Problem becomes more pronounced when going to 3D 
imaging calorimetry (many particles x many sensors).


▪ For example, hybrid silicon and PbScFi barrel 
calorimeter in ATHENA can have over 100k hits for high 
Q2 events, mostly in scintillating fiber elements.


▪ Harder problem than the 2D case.

▪ Granularity levels for 3D calorimetry more susceptible 

to detector noise. Could be accounted during 
digitization, or something that can be naturally present 
with AI.
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HOLISTIC CALORIMETRY
Integrating multiple calorimetry systems

10

▪ Of course, dangerous to treat calorimeters 
as isolated systems. Electromagnetic 
calorimeters at EIC sit in front of material 
(e.g. magnet), followed by hadronic 
calorimeters.


▪ Hadronic showers that punch through the 
EMCAL need to be tracked through material 
and propagated in the the HCAL.


▪ In principle requires a holistic approach to 
calorimetry, could be seen as an extension 
to 3D imaging calorimetry.



S. Joosten

BOTTLENECK: OPTICAL PHOTONS DETECTORS
Hadron PID at the EIC based around optical processes
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▪ Cherenkov detectors form the backbone of 
particle identification at EIC.


▪ Currently, all EIC detector designs use a dual 
radiator ring-imaging Cherenkov detector 
(RICH) in the hadron direction, a DIRC 
(detection of internally reflected Cherenkov 
light) in the barrel, and a modular RICH in the 
electron direction.


▪ These optical processes involve many photons 
that need to be tracked through complex 
surfaces.


▪ All three detectors rely on pattern-recognition of 
ring images in the reconstruction.
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EXAMPLE: THE MRICH
MRICH: Aerogel + fresnel lens + pixel sensor
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▪ Photons originate in the aerogel, pass 
through Fresnel lens (many 100s of 
grooves!).


▪ Sides of box mirror to optimize light 
collection.


▪ Impact of Fresnel lens on simulation 
performance non-negligible.


▪ Ring patterns observed by pixel sensor (e.g. 
LAPPD). Need to overlay with noise.
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EXAMPLE: THE DRICH
DRICH: Aerogel + heavy gas + mirror + pixel sensor
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▪ DRICH uses aerogel radiator + gas radiator (large 
volume O~1.5m).


▪ Needs to propagate light to mirrors, and then to light 
sensors (e.g. SiPMs).


▪ Geometry optimization can be done with AI (see 
Cristiano Fanelli’s talk).


▪ Noise treatment crucial to properly mirror real-live 
detector performance.


▪ DRICH essentially translates particles into a nested 
ring pattern (with noise)


▪ Replacing this part with a generative network can 
improve simulation performance.


▪ Note that the reconstruction end is also a prime place 
to use AI. 
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EXAMPLE: THE DIRC
DIRC: Quartz + glue + lenses + expansion volume + pixel sensor

14

▪ DIRC has similar challenges (but a 
much more complex optics system - 
much more complex ring patterns!).


▪ Similar argument to the MRICH and 
DRICH, a natural place to use 
generative networks.
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TRACKING DETECTORS AND VERTEXING
Realistic noise near the beampipe
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▪ Tracking detectors only see relatively low 
numbers of hits (compared to typical HEP 
scenarios).


▪ Classical GEANT approach works well here.

▪ One caveat is the treatment of accelerator 

effects (beam-gas events, synchrotron 
radiation, …) impacting in particular the 
vertex tracker.


▪ This is currently treated by manually injecting 
events in the digitization stage.


▪ It seems that this is another target where we 
could use AI to inject realistic background 
noise at the simulation level.
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BEAMLINE DETECTOR SYSTEMS
Precision magnet transport over extended distance
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Slide by A. Jentsch

▪ Example: IP6 far-forward detection 
elements, consisting of Roman Pots, 
Off-Momentum Detectors and Zero-
Degree Calorimeter


▪ Particle transport through the extended 
magnet system needs to be done with 
small step size to get the optics right.


▪ This important component to EIC 
events is relatively expensive. A 
factorized description of the far-forward 
region (either particle transport or 
holistic) could significantly speed up 
simulations.
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SUMMARY
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▪ Short-term: need large-scale simulations for 
optimization of a complex detector system.


▪ Long-term: need (even larger)-scale 
simulations to properly analyze high-
luminosity/high-precision measurements.


▪ Bottlenecks usually a combination between 
many particles, many geometry elements 
and/or many simulation steps.


▪ Calorimetry, Cherenkov detectors and the 
far-forward/far-backward regions are prime 
targets for AI-driven acceleration.



THE END
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